Some Remarks on Nonlinear Chebyshev Approximation to Functions Defined on Normal Spaces

Ryszard Smarzewski
Department of Numerical Methods, M. Curie-Sklodowska University, 20-031 Lublin, Poland
Communicated by G. Meinardus

Received March 3, 1977

1. Introduction

Let $C_{b}(X)$ be the space of real-bounded continuous functions defined on a normal space X with the norm

$$
\|f\|=\sup \{|f(x)|: x \in X\}
$$

and let G be a subset of $C_{b}(X)$. For $f \in C_{b}(X), g \in G$, and a real number λ we denote

$$
B_{\lambda}(f, g)=\{x \in X:|f(x)-g(x)| \geqslant \mid f-g \|-\lambda\} .
$$

Definition 1 (see [7]). G has the weak betweenness property if for any two distinct elements g and h in G and for every nonempty closed subset D of X such that inf $\{|h(x)-g(x)|: x \in D\}>0$ there exists a seqeunce $\left\{g_{i}\right\}$ in G such that

$$
\text { (i) } \lim _{i \rightarrow \infty}\left\|g-g_{i}\right\|=0
$$

and

$$
\text { (ii) } \inf \left\{\left[h(x)-g_{i}(x)\right]\left[g_{i}(x)-g(x)\right]: x \in D\right\}>0
$$

for all integers i.
Definition 2. An element $g \in G$ is a best approximation to the given $f \in C_{b}(X)$ when $\|f-g\| \leqslant\|f-h\|$ for all $h \in G$.

We have proved in [7] (generalizing [3, Theorem 1]) the following result: Let us assume that G has the weak betweenness property. Thus, the following theorem holds:

Theorem 1. An element $g \in G$ is a best approximation in G to a function
$f \in C_{b}(X)$ if and only if there exists no such element $h \in G$ and such positite $\epsilon<\|f \cdots g\|$ that

$$
\inf \left\{[f(x)-g(x)][h(x)-g(x)]: x \in B_{\lambda}(f, g)\right\}>0
$$

for ail $\lambda, 0<\lambda \leqslant \epsilon$.
Remark. We note that Theorem 1 has been formulated in [7] with the following assumption : X is a metric space. However, reviewing [7, proof of Theorem 1] we see that the above assumption can be changed to : X is a topological space.

The main purpose of this paper is to prove that if Theorem 1 holds for every $f \in C_{b}(X)$ then G must have the weak betweenness property. In the case when X is a compact metric space this fact was established in [6]. An immediate consequence of this fact is that every set G having the betweenness property [1] or being asymptotically convex [5] also has the weak betweenness property.

2. Main Results

Theorem 2. If Theorem 1 holds for every $f \in C_{b}(X)$, then G has a weak betweenness property.

Proof. Let us assume that Theorem 1 holds for every $f \in C_{b}(X)$ and for a $G \subset C_{b}(X)$. Let $\delta_{i}, i=1,2, \ldots$, be a strictly decreasing sequence of positive numbers convergent to zero. Let h, g be two distinct elements in G and let D be a closed subset of X such that

$$
\tau=\inf \{|h(x)-g(x)|: x \in D\}>0 .
$$

To prove the theorem, we construct the sequence $g_{i} \in G, i=1,2, \ldots$ such that
(a) $\left\|g-g_{i}\right\|<\delta_{i}$
and
(b) $\quad \inf \left\{\left[h(x)-g_{i}(x)\right]\left[g_{i}(x)-g(x)\right]: x \in D\right\}>0$ for all $i=1,2, \ldots$

First, we do this for $i=1$.
Let

$$
\begin{aligned}
& Z_{1}=\{x \in X:|h(x)-g(x)| \leqslant \tau / 2\} \\
& U_{1}=\{x \in X: h(x)-g(x)<-\tau / 2\}
\end{aligned}
$$

and $V_{1}=X \backslash\left(Z_{1} \cup U_{1}\right)$. Obviously D and Z_{1} are disjoint closed sets. For all dyadic rationals of the form

$$
r=k / 2^{n}, \quad n=0,1, \ldots \text { and } k=0,1, \ldots, 2^{n}
$$

we define open sets A_{r} such that

$$
Z_{1} \subset A_{0}, \quad X \backslash D=A_{1}, \quad \text { and } \bar{A}_{r} \subset A_{s} \quad \text { for all } r<s
$$

The existence of these sets follows from the normality of the space X and may be proven by induction on n as in [4, pp. 126-127].

Define the nonnegative function p_{1} on X such that

$$
\begin{aligned}
& p_{1}(x)=0 \quad \text { for all } x \in Z_{1}, \\
& p_{1}(x)=\sup \left\{r: x \notin A_{r}\right\} .
\end{aligned}
$$

Now we prove that the function

$$
\begin{equation*}
s_{1}(x)=p_{1}(x) \operatorname{sign}[h(x)-g(x)] \tag{1}
\end{equation*}
$$

is continuous on X. Let $\epsilon>0$ and $x \in X$ be arbitrary and let an integer n and a dyadic rational r be such that

$$
2^{-n} \leqslant \epsilon \quad \text { and } \quad p_{1}(x)<r<p_{1}(x)+2^{-n-1}
$$

Let us define the open set H_{x} containing x as follows:

$$
\begin{aligned}
H_{x} & =\left(A_{r} \backslash \bar{A}_{r-2-n}\right) \cap U_{1} & & \text { if } x \in U_{1}, \\
& =\left(A_{r} \backslash \bar{A}_{r-2-n}\right) \cap V_{1} & & \text { if } x \in V_{1}, \\
& =A_{2-n-1} & & \text { if } x \in Z_{1}
\end{aligned}
$$

where we understood that $A_{s}=\varnothing$ if $s<0$ and $A_{s}=X$ if $s>1$. Then we have for all $y \in H_{x}$

$$
\left|s_{1}(x)-s_{1}(y)\right|=\left|p_{1}(x)-p_{1}(y)\right|<2^{-n} \quad \text { if } x \in U_{1} \cup V_{1}
$$

and

$$
\left|s_{1}(x)-s_{1}(y)\right|=\left|s_{1}(y)\right| \leqslant\left|p_{1}(y)\right|<2^{-n} \quad \text { if } x \in Z_{1}
$$

Hence the function s_{1} is continuous on X.
Define the continuous and bounded function f_{1} on X by

$$
\begin{equation*}
f_{1}(x)=g(x)+\mu_{1} s_{1}(x) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
0<\mu_{1}<0.5 \min \left\{\delta_{1}, \tau\right\} \tag{3}
\end{equation*}
$$

Note that we have

$$
\begin{equation*}
\left\|f_{1}-g\right\|=\left|f_{1}(x)-g(x)\right|=\mu_{1} \quad \text { for all } x \in D \tag{4}
\end{equation*}
$$

Now we prove that g is not a best approximation to f_{1} in G. Because for all $0<\lambda<\mu_{1}$ we have

$$
B_{\lambda}\left(f_{1}, g\right)=\left\{x \in X: \mu_{1}\left|s_{1}(x)\right| \geqslant \mu_{1}-\lambda\right\}=\left\{x \in X: \mu_{1} p_{1}(x) \geqslant \mu_{1}-\lambda\right\}
$$

and hence $B_{\lambda}\left(f_{1}, g\right) \subset X \backslash A_{r}$ for all dyadic rationals such that $0<r<1-$ $\left(\lambda / \mu_{1}\right)$ then, for all $x \in B_{\lambda}\left(f_{1}, g\right)$

$$
\begin{aligned}
{\left[f_{1}(x)-g(x)\right][h(x)-g(x)] } & =\mu_{1} p_{1}(x)|h(x)-g(x)| \\
& \geqslant\left(\mu_{1}-\lambda\right)|h(x)-g(x)| \geqslant\left(\mu_{1}-\lambda\right)(\tau / 2)>0
\end{aligned}
$$

Hence and from Theorem 1 the function g is not a best approximation in G to f_{1}, i.e., there exists a function $g_{1} \in G$ such that

$$
\begin{equation*}
\left\|f_{1}-g_{1}\right\|<\left\|f_{1}-g\right\|=\mu_{1} \tag{5}
\end{equation*}
$$

Hence, from the triangle inequality for a norm and from (3) we have

$$
\begin{equation*}
\left\|g-g_{1}\right\|<\delta_{1} \tag{6}
\end{equation*}
$$

i.e., condition (a) is satisfied for $i=1$.

Because, from (4) and (5)

$$
\begin{equation*}
\left|f_{1}(x)-g_{1}(x)\right|<\left|f_{1}(x)-g(x)\right| \quad \text { for } x \in D \tag{7}
\end{equation*}
$$

then for every such x we have

$$
\begin{equation*}
\operatorname{sign}\left[g_{1}(x)-g(x)\right]=\operatorname{sign}\left[f_{1}(x)-g(x)\right]=\operatorname{sign}[h(x)-g(x)] . \tag{8}
\end{equation*}
$$

Hence and from (3), (4), and (5) we obtain for all $x \in D$

$$
\begin{aligned}
& {\left[g_{1}(x)-g(x)\right]\left[h(x)-g_{1}(x)\right]} \\
& \quad=\left|g_{1}(x)-g(x)\right|\left[h(x)-g_{1}(x)\right] \operatorname{sign}[h(x)-g(x)] \\
& \quad=\left|f_{1}(x)-g(x)-\left[f_{1}(x)-g_{1}(x)\right]\right|\left(|h(x)-g(x)|-\left|g_{1}(x)-g(x)\right|\right) \\
& \quad \geqslant\left(\left|f_{1}(x)-g(x)\right|-\left|f_{1}(x)-g_{1}(x)\right|\right)\left(2 \mu_{1}-\left\|f_{1}-g_{1}\right\|-\left\|f_{1}-g\right\|\right) \\
& \quad=\left(\mu_{1}-\left|f_{1}(x)-g_{1}(x)\right|\right)\left(\mu_{1}-\left\|f_{1}-g_{1}\right\|\right) \geqslant\left(\mu_{1}-\left\|f_{1}-g_{1}\right\|\right)^{2}>0 .
\end{aligned}
$$

This implies that condition (b) is satisfied and the proof for $i=1$ is completed.

Because

$$
\left|g_{1}(x)-g(x)\right| \geqslant \mu_{1}-\left\|f_{1}-g_{1}\right\|>0
$$

for all $x \in D$ then we have

$$
\begin{equation*}
\tau_{1}=\inf \left\{\left|g_{1}(x)-g(x)\right|: x \in D\right\}>0 \tag{9}
\end{equation*}
$$

Now, replacing h by g_{1}, τ by τ_{1}, and δ_{1} by δ_{2} and using (9) we may construct with the small modifications of above statements the element g_{2} in G such that conditions (a) and (b) are satisfied. We do this briefly.

Define the sets

$$
\begin{aligned}
& Z_{2}=\left\{x \in X:\left|g_{1}(x)-g(x)\right| \leqslant \tau_{1} / 2\right\}, \\
& U_{2}=\left\{x \in X: g_{1}(x)-g(x)<-\tau_{1} / 2\right\}, \\
& V_{2}=X \backslash\left(Z_{2} \cup U_{2}\right)
\end{aligned}
$$

Additionally, construct as above the continuous nonnegative function p_{2} and set

$$
\begin{gather*}
s_{2}(x)=p_{2}(x) \operatorname{sign}\left[g_{1}(x)-g(x)\right] \\
f_{2}(x)=g(x)+\mu_{2} s_{2}(x)
\end{gather*}
$$

where

$$
\begin{gather*}
0<\mu_{2}<0.5 \min \left\{\mu_{1}, \delta_{2}, \tau_{1}\right\} \\
\left\|f_{2}-g\right\|=\left|f_{2}(x)-g(x)\right|=\mu_{2} \quad \text { for all } x \in D
\end{gather*}
$$

Similarly as above we may prove that there exists $g_{2} \in G$ such that

$$
\left\|f_{2}-g_{2}\right\|<\left\|f_{2}-g\right\|=\mu_{2}
$$

and

$$
\left\|g-g_{2}\right\|<\delta_{2}
$$

i.e., condition (a) is satisfied for $i=2$.

Because by (4) and (5) it is

$$
\left|f_{2}(x)-g_{2}(x)\right|<\left|f_{2}(x)-g(x)\right|
$$

for all $x \in D$ then we have from ($\left.1^{\prime}\right),\left(2^{\prime}\right)$, and (8) that

$$
\operatorname{sign}\left[g_{2}(x)-g(x)\right]=\operatorname{sign}\left[f_{2}(x)-g(x)\right]=\operatorname{sign}[h(x)-g(x)] .
$$

Hence and from (3^{\prime}), (4^{\prime}), and (5^{\prime}) we obtain

$$
\begin{aligned}
& {\left[g_{2}(x)-g(x)\right]\left[h(x)-g_{2}(x)\right]} \\
& \quad=\left|g_{2}(x)-g(x)\right|\left(|h(x)-g(x)|-\left|g_{2}(x)-g(x)\right|\right) \\
& \quad \geqslant\left(\left|f_{2}(x)-g(x)\right|-\left|f_{2}(x)-g_{2}(x)\right|\right)\left(|h(x)-g(x)|-\left|g_{2}(x)-g(x)\right|\right) \\
& \quad \geqslant\left(\mu_{2}-\left\|f_{2}-g_{2}\right\|\right)\left(2 \mu_{1}-\left\|f_{2}-g_{2}\right\|-\left\|f_{2}-g\right\|\right) \\
& \quad \geqslant\left(\mu_{2}-\left\|f_{2}-g_{2}\right\|\right)\left(2 \mu_{2}-\left\|f_{2}-g_{2}\right\|-\left\|f_{2}-g\right\|\right) \\
& \quad=\left(\mu_{2}-\left\|f_{2}-g_{2}\right\|\right)^{2}>0 .
\end{aligned}
$$

This implies that condition (b) is satisfied and the proof is completed for $i=2$.

Because

$$
\left|g_{2}(x)-g(x)\right| \geqslant \mu_{2}-f_{2}-g_{2} \mid>0
$$

for all $x \in D$ then we have

$$
\tau_{2}=\inf \left\{\left|g_{2}(x)-g(x)\right|: x \in D\right\}>0
$$

In generally, replacing g_{i-2} by g_{i-1}, τ_{i-2} by τ_{i-1}, and δ_{i-1} by δ_{i} we may analogously as for $i=2$ construct $g_{i} \in G$ for $i=3,4, \ldots$ satisfied conditions (a) and (b). Therefore, the proof is completed

Corollary 1. A necessary and sufficient condition that Theorem 1 hold for every $f \in C_{b}(X)$ is that G has a weak betweenness property.

Now we shall give an example of a subset in $C[-1,1]$ which does not have a weak betweenness property.

Example. Let P_{2} be the set of all polynomials of degree $\leqslant 2$ and H be the set of so-called H-polynomials [2], i.e., polynomials of the form $\pm\left(a x^{2}+\right.$ $b x+c)^{2}+d$ defined on interval $[-1,1]$. Define $G=P_{2} \cup H$. It is known [2] that G is a closed set and that for each function $f \in C[-1,1]$ there exists the best approximation in G.

We claim that G does not have the weak betweenness property. Let

$$
\begin{aligned}
& g(x)=(64 / 45)\left(x^{2}-\frac{5}{8}\right)^{2}-\frac{1}{5} \\
& h(x)=x .
\end{aligned}
$$

Then

$$
\begin{gathered}
g\left(\frac{1}{2}\right)=g\left(-\frac{1}{2}\right)=g(1)=g(-1)=0 \\
x=0 \quad \text { and } \quad x= \pm \frac{1}{2}\left(\frac{5}{2}\right)^{1 / 2}-\text { extremal points } \\
g(0)=\frac{16}{45}, \quad g\left(\pm \frac{1}{2}\left(\frac{5}{2}\right)^{1 / 2}\right)=-\frac{1}{5} \\
g\left(\frac{1}{4}\right)=h\left(\frac{1}{4}\right)=\frac{1}{4} .
\end{gathered}
$$

Let us set, for example, $D=[-1,1]\left(\frac{1}{5}, \frac{1}{3}\right)$.
Now we prove that there does not exist a sequence of functions $\left\{g_{i}\right\}$ in G lying strictly between $g(x)$ and $h(x)$ for all $x \in D$ and uniformly convergent on D to g. Indeed, such polynomials for sufficiently large i must have four zeroes $x_{1}<-1,-\frac{1}{2}<x_{2}<0, \frac{1}{2}<x_{3}<x_{4}<1$ and three extremal points $y_{1} \in\left(x_{1}, x_{2}\right), y_{2} \in\left(x_{2}, x_{3}\right)$, and $y_{3} \in\left(x_{3}, x_{4}\right)$ such that $g_{i}\left(y_{1}\right)<-\frac{1}{5}, g_{i}\left(y_{2}\right)>0$ and $-\frac{1}{5}<g_{i}\left(y_{3}\right)<0$ (see Fig. 1). This is obviously impossible in P_{2}.

Figure 1

Because every H-polynomial in H with three distinct extremal points has such a property that two from these points are zeores of $a x^{2}+b x+c$, i.e., two minimum values are equal then such sequence $\left\{g_{i}\right\}$ does not exist also in H. Therefore, G does not have the weak betweenness property. Hence and from Corollary 1 there exist the functions in $C[-1,1] \mid G$ for which Theorem 1 does not hold (see also [2]).

Reffrences

1. C. B. Dunham, Chebyshev approximation by families with the betweenness property, Trans. Amer. Math. Soc. 136 (1969), 151-157.
2. R. Hettich and W. Wetterling, Nonlinear Chebyshev approximation by H-polynomials, J. Approximation Theory 7 (1973), 198-211.
3. D. W. Kammler, An alternation characterization of best uniform approximations on noncompact intervals, J. Approximation Theory 16 (1976), 97-104.
4. C. Kuratowski, "Topologie," Vol. I, PWN, Warszawa, 1958.
5. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, New York, 1967.
6. R. Smarzewski, A note on characterization of family with weak betweenness property, to appear.
7. R. Sharzewski, On characterization of nonlinear best Chebyshev approximations to continuous and bounded functions defined on metric spaces, to appear.
