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1. INTRODUCTION

Let Cb(X) be the space of real-bounded continuous functions defined on a
normal space X with the norm

II III = sup {! j(x)! : x E X}

and let G be a subset of Cb(X). For IE Cb(X), g E G, and a real number Awe
denote

B;,(f, g) = {x EX: Ij(x) - g(x) I ;:? If- gil - A}.

DEFINITION 1 (see [7]). G has the weak betweenness property if for any
two distinct elements g and h in G and for every nonempty closed subset D
of X such that inf {I h(x) - g(x) I : xED} > 0 there exists a seqeunce {gi} in
G such that

(i) limi~oo II g - gi II = 0,

and

(ii) inf ([h(x) - gi(X)][gi(X) - g(x)] : xED} > °
for all integers i.

DEFINITION 2. An element g EGis a best approximation to the given
IE Cb(X) when III - g II ~ III - h II for all h E G.

We have proved in [7] (generalizing [3, Theorem I]) the following result:
Let us assume that G has the weak betweenness property. Thus, the following
theorem holds:

THEOREM I. An element g EGis a best approximation in G to a function
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f E Cb(X) if and only If there exists no such element h E G and such positire

E < Ii f g fj that

inf{[f(x)- g(x)][h(x) -- g(x)] : x E RAU, g)} > 0

for ail A, 0 < A E.

Remark. We note that Theorem 1 has been formulated in [7] with the
following assumption: X is a metric space. However, reviewing [7, proof of
Theorem I] we see that the above assumption can be changed to : X is a
topological space.

The main purpose of this paper is to prove that if Theorem I holds for
every fE Cb(X) then G must have the weak betweenness property. In the case
when X is a compact metric space this fact was established in [6]. An imme­
diate consequence of this fact is that every set G having the betweenness
property [1] or being asymptotically convex [5] also has the weak betweenness
property.

2. MAIN RESULTS

THEOREM 2. If Theorem I holds for every fE Cb(X), then G has a weak
betweenness property.

Proof Let us assume that Theorem I holds for every fE Cb(X) and for
aGe Cb(X). Let 0i , i = I, 2, ... , be a strictly decreasing sequence of positive
numbers convergent to zero. Let h, g be two distinct elements in G and let D
be a closed subset of X such that

T = inf{! hex) g(x)i: xED} > O.

To prove the theorem, we construct the sequence gi E G, i = I, 2, ... such that

(a) g -- gi '! < 0,
and

(b) inf{[h(x) - gi(X)][gi(X) -- g(x)] : xED} > 0 for all i = I, 2, ....

First, we do this for i = I.
Let

ZI = {x EX: i hex) - g(x) I :s; T12}

VI = {x EX: hex) - g(x) <-TI2}

and VI = X\(ZI U VI)' Obviously D and ZI are disjoint closed sets. For all
dyadic rationals of the form

r = kl2 n , n = 0, 1,... and k ~c. 0, 1,... , 2n
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we define open sets A r such that
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X\D = AI, for all r < s.

The existence of these sets follows from the normality of the space X and
may be proven by induction on n as in [4, pp. 126-127].

Define the nonnegative function PIon X such that

Pl(X) = 0 for all x E ZI ,

Pl(X) = sup{r : x ¢ A r}.

Now we prove that the function

SI(X) = Pl(X) sign[h(x) - g(X)] (I)

is continuous on X. Let E > 0 and x E X be arbitrary and let an integer nand
a dyadic rational r be such that

and

Let us define the open set H x containing x as follows:

H x = (Ar\Ar-z-n) n U1

= (Ar\Ar-z-n) n VI

if x E U1 ,

if x E VI'

if x E ZI

where we understood that As = 0 if s < 0 and A R = X if s > 1. Then we
have for all y E H x

and

if x E ZI'

Hence the function SI is continuous on X.
Define the continuous and bounded functioniJ. on X by

where

o < "'1 < 0.5 min {OI , T}.

(2)

(3)
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Note that we have
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!Ih -- g c= I/l(x) - g(x)1 = JLl for all xED. (4)

Now we prove that g is not a best approximation to h in G. Because for all
o < iI < JLl we have

BJ.(fl ,g) = {x EX: JLl ISl(X) I ~ JLl - iI} = {x EX: JLlPl(X) ~ JLl - iI}

and hence Bill, g) C X\A r for all dyadic rationals such that 0 < r < I ­
(A!I-'l) then, for all x E Bih , g)

[hex) - g(x)][h(x) - g(x)] = JLlPl(X) I hex) - g(x) I

~ (JLl - iI)1 hex) - g(x) I ~ (JLl - iI)(T/2) > O.

Hence and from Theorem 1 the function g is not a best approximation in G
toIr , i.e., there exists a function gl E G such that

IIIr - gIll < 11/1 - gil = JLl'

Hence, from the triangle inequality for a norm and from (3) we have

i.e., condition (a) is satisfied for i = 1.
Because, from (4) and (5)

(5)

(6)

Ih(x) - gl(X) I < Ih(x) - g(x)1

then for every such x we have

for xED (7)

sign[gl(x) - g(x)] = sign[lr(x) - g(x)] = sign[h(x) - g(x)]. (8)

Hence and from (3), (4), and (5) we obtain for all XED

[grCx) - g(x)][h(x) - gl(X)]

= Igl(X) - g(x) I[h(x) - gl(X)] sign[h(x) - g(x)]

= Ihex) - g(x) - [hex) - gl(X)] 1(1 hex) - g(x) [ - Igl(X) - g(x)l)

~ (I hex) - g(x)1 - I11(x) - gl(x)J)(2JLl - II h - gIll - !I h - gil)

= (JLl - Ih(x) - gl(X)I){JL1 -11/1 - gIll) ~ (JLl -llh - gll1)2 > O.

This implies that condition (b) is satisfied and the proof for i = 1 is com­
pleted.

Because

Igl(X) - g(x) I ~ JLl - 11/1 - gIll> 0
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for all xED then we have

T1 = inf{1 gix) - g(x)I : xED} > O.
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(9)

Now, replacing h by g1' T by T1' and 81by 82and using (9) we may construct
with the small modifications of above statements the element g2 in G such
that conditions (a) and (b) are satisfied. We do this briefly.

Define the sets

Z2 = {x EX: 1 g1(X) - g(x) I ~ T1/2},

U2= {x EX: g1(X) - g(x) < -T1/2},

V2 = X\(Z2 U U2).

Additionally, construct as above the continuous nonnegative function P2 and
set

S2(X) = P2(X) sign[g1(x) - g(x)],

fix) = g(x) + P-2S2(X).

(1')

(2')

where

o < P-2 < 0.5 min{p-1 , 82 , T1}, (3')

Ilh - gil = [hex) - g(x) I = P-2 for all XED. (4')

Similarly as above we may prove that there exists g2 E G such that

and

i.e., condition (a) is satisfied for i = 2.
Because by (4') and (5') it is

1/2(x) - g2(X) I < 1/2(x) - g(x)1

(5')

(6')

(7')

for all XED then we have from (1 '), (2'), and (8) that

sign[g2(x) - g(x)] = sign[/2(x) - g(x)] = sign[h(x) - g(x)]. (8')

Hence and from (3'), (4'), and (5') we obtain

[g2(X) - g(x)][h(x) - g2(X)]

= Ig2(X) - g(x)I(1 hex) - g(x) [ - I g2(X) - g(x)1)

;;?: (1/2(X) - g(x)j - Ih(X) - g2(X)I)(j hex) - g(x)j - Ig2(X) - g(x)1)

;;?: (p..2 -11/2 - g211)(2p-1 -11/2 - g21[ - 11/2 - gil)

;;?; (p..2 - 11/2 - g211)(2p-2 -11/2 - g21[ - 11/2 - gil)
= (p..2 - 11/2 - g211)2 > o.
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This implies that condition (b) is satisfied and the proof is completed for
i = 2.

Because

for all xED then we have

T 2 = inf{1 g2(X) ~ g(x)j : XED} > O. (9')

In generally, replacing gi-2 by gi-l' Ti-2 by Ti-l' and Oi-l by 0i we may
analogously as for i = 2 construct gi E G for i = 3, 4, ... satisfied conditions
(a) and (b). Therefore, the proof is completed I

COROLLARY 1. A necessary and sufficient condition that Theorem 1 hold
for everyfE Cb(X) is that G has a weak betweenness property.

Now we shall give an example of a subset in C[~ 1, I] which does not have
a weak betweenness property.

EXAMPLE. Let P2 be the set of all polynomials of degree ~2 and H be the
set of so-called H-polynomials [2], i.e., polynomials of the form ± (ax2 +
bx + C)2 + d defined on interval [~1, 1]. Define G = P2 U H. It is known
[2] that G is a closed set and that for each function f E C[~ I, I] there exists
the best approximation in G.

We claim that G does not have the weak betweenness property. Let

g(x) = (64/45)(x2 ~ W -L
hex) = x.

Then

gm = g( --~) = g(l) = g(- I) = 0

x = 0 and x = ±t(-i)1/2 - extremal points

g(O) = H, g(±H-i)1/2) = -i
g(i) = h(i) = !.

Let us set, for example, D = [~I, I]\(i, i).
Now we prove that there does not exist a sequence of functions {gi} in G

lying strictly between g(x) and hex) for all XED and uniformly convergent
on D to g. Indeed, such polynomials for sufficiently large i must have four
zeroes Xl < -I, -t < X 2 < 0, t < Xa < X 4 < I and three extremal points
Y1 E (Xl' x2), Y2 E (X2 , xa), and Ya E (xa , x4) such that gi(Yl) < -i, gi(Y2) > 0
and -i < gi(Ya) < 0 (see Fig. I). This is obviously impossible in Pz •
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FIGURE 1

I I

g(x)

Because every H-po1ynomia1 in H with three distinct extremal points has
such a property that two from these points are zeores ofax2 -+ bx + c, i.e.,
two minimum values are equal then such sequence {gi} does not exist also in
H. Therefore, G does not have the weak betweenness property. Hence and
from Corollary 1 there exist the functions in C[-1, 1]\G for which Theorem 1
does not hold (see also [2]).
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